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SUMMARY 

There has been extensive research, particularly in human genetics, devoted to the development 

of methods that use genotype data for the identification of distinct genetic sub-populations within 

the population of interest. Some of these methods have also been incorporated in the field of 

animal breeding in order to improve the accuracy of predicted breeding values through their use as 

genetic group effects. In this paper, we compared a method of finding sub-populations based on a 

decomposition of a normalised matrix derived from genotype data, to a modified probabilistic 

PCA model that took into account the non-normal nature of the genotype data. In an initial study, 

where we used a dataset from the New Zealand sheep industry with a known breed composition, 
we found that the modified probabilistic PCA model gave equivalent separation between breeds to 

EIGENSTRAT. 

 

INTRODUCTION 

Livestock programs aim to optimise long-term genetic gain. To do this the ideal is for breeding 

values to be as accurate as possible. One method of improving breeding value accuracy is through 

the fitting of genetic groups. However in practice, genetic groups often prove difficult to define 

(Kuehn et al. 2007).  

With the increased availability of genotype data, there has been a move towards replacing 

pedigree records with genotype data for the construction of the relationship matrix to improve 

breeding value accuracy. In addition there have been attempts to use genotype data to define 
structure within the population of interest, which is then fitted in the model, usually as a fixed 

effect. An example of this is EIGENSTRAT (Patterson et al. 2006), which in practice is very 

similar to the eigen-decomposition of the second genomic relationship matrix proposed in 

VanRaden (2008). This method ignores the non-normal nature of the genotype data and has been 

shown to reduce across breed accuracy when used as a genetic group (Daetwyler et al. 2012).   

To deal with the issues outlined, we propose a probabilistic PCA model that explicitly takes 

into account the ideal conditions of binomially distributed genotypes. We then compared the two 

methods, focusing on their respective ability to distinguish between genetic groups, which we took 

to correspond to the recorded breed.   

 

MATERIALS AND METHODS 

Data. The genotype data (5K Illumina SNP Chip) available was from 8,902 animals born from 
2000 to 2014, each with up to 5,283 markers recorded. Genotypes which were missing for more 

than 1 % of animals or monomorphic for all animals were omitted from analysis. The removal of 

animals with any missing genotypes reduced the dataset to 1,672 animals with 5,170 markers 

recorded. Breed composition data was obtained from Sheep Improvement Limited (SIL). The 

distribution of breeds in the dataset is indicated on Table 1.  

EIGENSTRAT. This method of identifying population structure was introduced in Patterson 

et al. (2006). It assumes a 𝑛 ×  𝑚 matrix of genotypes 𝒁 with rows corresponding to individuals 

and columns to markers and coded  0, 1, 2 where the numbers correspond to the number of copies 

of the A allele. Each column j of 𝒁 was then normalised by subtracting by twice the allele 
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frequency 𝑝𝑗  and dividing the result by √𝑝𝑗(1 − 𝑝𝑗) to form the matrix 𝑴. Eigen-decomposition 

(Principal Component analysis) was then performed on the matrix  
1

𝑚
𝑴𝑴’. Determination of 

population structure was then made using the resulting eigenvectors (Principal components). 
 

Table 1. Breed distribution of genotyped animals as recorded in SIL  

 
Breed distribution of animals 

Breed Number of animals Breed Number of animals 

Unknown 11 Perendale 133 
Romney 495 Highlander 31 
Coopworth  67 Composite 2 

Overall distribution of breeds where known 

Breed % in population Breed % in population 

Romney 48.13 Poll Dorset 1.28 
Coopworth 14.87 East Friesian 1.04 
Perendale 13.88 Highlander 3.37 
Finnish Landrace  1.12 Composite 3.57 
Texel 6.70 Other Breeds  2.53 
Suffolk 3.51 (less than 1 % of population) 

 

Binomial probabilistic principal component analysis (BPPCA). Under ideal conditions of 

Hardy-Weinberg equilibrium and no linkage disequilibrium, each of the markers j observed from 

individual i can be regarded as realisations of a binomial random variable. 

𝒁𝑖𝑗 ∼ 𝐵𝑖𝑛(2, 𝑝𝑖𝑗)                 [1] 

BPPCA assumes that the individual-marker specific allele frequency 𝑝𝑖𝑗  can be modelled using 

the link function 𝜽𝑖𝑗 = log(𝑝𝑖𝑗/(1 − 𝑝𝑖𝑗)) as a function of a marker specific intercept 𝜇𝑗, f 

principal components, where f was pre-determined, and an error term. This results in the following 

model for the observed genotype pattern, where 𝜽 is a 𝑛 ×  𝑚 matrix of link functions, 𝑳 a 𝑛 ×  𝑓 

matrix of components, 𝑭 a 𝑓 ×  𝑚 matrix of scores, and 𝒆 is a 𝑛 ×  𝑚 matrix of residuals. 

 

𝒁𝑖𝑗 ∼ 𝐵𝑖𝑛(2, (1 + e−𝜃𝑖𝑗 )−1)  

𝜽𝑖𝑗 = 𝜇𝑗 + ∑ 𝑳𝑖𝑘𝑭𝑘𝑗𝑘 + 𝒆𝑖𝑗 , 𝑭𝑘𝑗 ∼ 𝑁(0,1),  𝒆𝑖𝑗~𝑁(0, 𝜎2)            [2] 

To fit the model, we used Pólya-gamma data augmentation as outlined in Polson et.al (2013) 

and previously implemented for a similar model in Klami (2014). This allowed closed form 
conditional posteriors to be obtained for all model parameters. Based on the eigenvalue scree plot 

obtained from implementing the EIGENSTRAT method, the number of components to fit was 

fixed at five. Estimates were obtained from the posterior means found by using a blocked Gibbs 

sampler based on the conditional posteriors. The Gibbs sampler was stopped once the relative 

change in 𝜽̅ dropped below 1 × 10−5. Spectral value decomposition was then applied to the initial 

estimates to ensure orthogonal components. This ensured comparability of components to those 

extracted using EIGENSTRAT. 

RESULTS AND DISCUSSION 

Ability to separate breeds based on principal components. Figure 1 plots the first two 

principal components obtained from EIGENSTRAT and BPPCA with pure breed animals 

highlighted. Both methods were able to distinguish between different pure breed populations.  
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Figure 1. First two principal components obtained from EIGENSTRAT and BPPCA.  

 

Possible uses of the principal components (PC) to represent population structure. Since it 

is established that principal component analysis on normalised genotype data can distinguish 

between sub-populations, the fitting of PC has been used extensively to account for population 

structure in models. The PC are usually fitted as fixed effects. Since EIGENSTRAT extracts PC 

from the decomposition of the genomic relationship matrix, we suggest that it is more appropriate 

to fit the PC as random effects. In addition, fitting a decomposition of the genomic relationship 
matrix in addition to the genomic relationship matrix could be regarded as over-fitting. 

In BPPCA, PC are constructed at the link function level, not directly from the observed data. 

This means that the relationship between the PC and the genomic relationship matrix is indirect. 

This can be demonstrated by the law of total variance and noting that 𝐸(𝒑) and 𝑉𝑎𝑟(𝒑), where 𝒑 

is the vector of latent probabilities for each animal, are both functions of the BPPCA PC. It may 

also mean representing population structure using PC from the BPPCA model is less prone to the 

reduction of across breed accuracy seen in Daetwyler et al. (2012). 

 

𝑉𝑎𝑟(𝒁) = 𝐸(𝑉𝑎𝑟(𝒁|𝒑)) + 𝑉𝑎𝑟(𝐸(𝒁|𝒑))                              [3] 

      = 𝑑𝑖𝑎𝑔{𝐸(2𝒑(1 − 𝒑))} + 𝑉𝑎𝑟(2𝒑) = 2𝑑𝑖𝑎𝑔{𝐸(𝒑) − 𝐸(𝒑)2 − 𝑉𝑎𝑟(𝒑)} + 4𝑉𝑎𝑟(𝒑) 

If the genotype data can be represented by a low rank matrix factorisation at the link function 
level, the correlations between animals implied by the PC would be higher (if correlation is 

positive) or lower (if correlation is negative) than the corresponding correlations in the genomic 

relationship matrix. However EIGENSTRAT extracts a reduced number of PC, which contain 

more information about covariance than variance elements. Therefore the implied correlation 

between random structure effects of different animals is similar between the two methods. This is 

shown in Figure 2, which shows heat maps of the implied between animal correlation.  

Figure 2 shows if PC are used as a classification tool to distinguish between breeds, similar 

results were obtained from EIGENSTRAT and BPPCA.  In our dataset, both clearly identify each 

pure breed population, sub-groups within the Romneys and classify the animals of unknown breed 

as Perendale. Corresponding PC extracted by the two methods were highly correlated, except for 

component 2 and 3, as seen in Table 2. The high negative correlation seen in component 1 and 5 is 

due to the sign invariance property of estimated loadings in latent factor models. 
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Figure 2. Heat maps of implied correlations between animals that were either of pure or 

unknown breed. (Dark Red: High positive correlation, Dark Blue: High negative correlation) 

 

Table 2. Correlation between EIGENSTRAT and BPPCA principal components 
 

EIGENSTRAT 
component 

BPPCA component 
1 2 3 4 5 

1 -0.9922 -0.0342 -0.0062 0.0194 0.0537 
2 -0.0299 0.7297 0.6536 0.1353 -0.0483 
3 0.0159 -0.6636 0.7352 0.0157 -0.0345 
4 0.0130 -0.0895 -0.1086 0.9677 -0.1509 

5 -0.0509 -0.0023 -0.0406 -0.1534 -0.9683 

 

Conclusions. BPPCA can be shown to successfully distinguish between different breeds and 

identify the breed of unknown animals but we did not find substantial differences to 

EIGENSTRAT for either property. Currently BPPCA is much slower to implement and the 
challenge will be to determine if the method has advantages in populations with different sub-

structure than the example given. In the future, the fitting of principal components from 

EIGENSTRAT and BPPCA as random effects in a BLUP model can be compared for their 

efficacy in the prediction of breeding values with respect to accuracy and bias. 
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